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Abstract—Managing systems and network policies for large-
scale organizations is challenging for business process automa-
tion. Although Policy-as-code (PAC) platforms can ease the task
of policy management by defining and executing systems and
network policies in the form of programmable codes, convert-
ing existing organizational policies into PAC-compliant code is
not straightforward due to the need for complex dependency
resolutions across platforms and applications. On the other
hand, policymakers/top management of a business prefer natural
language (NL)-based policies that are easy to comprehend. This
paper explores large language models (LLMs) to facilitate the
automated conversion of NL-based policies to PAC-complaint
code. We observe that public LLMs like ChatGPT need thorough
multi-round prompt engineering to generate PAC policies. This
concerns privacy and security as the organizational policies are
sensitive business information. Consequently, we explore using a
private and personalized setup, like private LLMs. Notably, we
observe that existing personalized LLMs like PrivateGPT fail to
understand the system-specific policy semantics. Consequently,
we develop a framework called AutoPAC, which uses a micro-
service architecture coupled with fine-tuned models to generate
and validate PAC-complaint policies over a personalized LLM
framework. An evaluation with more than 100 test cases indicates
that the proposed framework effectively generates and validates
PAC policies on the fly.

Index Terms—Policy Management, LLM, PrivateGPT, OPA

I. INTRODUCTION

Large-scale business organizations often need to comply

with the policies of regulatory authorities. For example, in-

formation technology (IT) operations in banking are often

controlled and managed by the policies defined by the cen-

tral banking authorities of the corresponding country. As an

example, the Reserve Bank of India (RBI) provides various

policies for user authentication for regulatory compliance with

cloud-based services1. However, in practice, these policies are

modified from time to time based on technological upgrades,

changes in the organizational frameworks, regulatory compli-

ances, etc. Therefore, managing such policies in a large-scale

organization becomes a challenging task, particularly when

the IT operations are distributed and scaled across various

administrative bodies. Notably, many business organizations

have adopted “policy-as-code” (PAC)2 [1]-based policy man-

agement and compliance systems where the policies are stored

in the form of programs/code snippets. Among many, PAC

1https://learn.microsoft.com/en-us/azure/governance/policy/samples/
rbi-itf-banks-2016

2https://www.paloaltonetworks.com/cyberpedia/what-is-policy-as-code

provides ambiguity-free interpretation of policies, consistency

across multiple systems, low-effort integration in heteroge-

neous systems, effective version management, and ease of

producing compliance reports for internal and external audits.

However, till today, the adoption of PAC is majorly re-

stricted to the IT industries3, and business organizations face

several challenges in migrating from existing systems to PAC4.

First, existing PAC frameworks use special-purpose languages

to represent policies. For example, the Open Policy Agent

(OPA) [2] framework uses a query language called REGO

that extends datalog (a declarative logic programming lan-

guage) with policy-specific semantics to represent system-level

policies. To utilize the full potential of the PAC frameworks,

such PAC-specific languages have a learning curve that the

policymakers (often senior management) need to understand

and learn. Further, manually translating a policy schema to

a PAC-specific language semantics is tedious and often en-

counters compliance issues, particularly when the policy spans

multiple applications or infrastructure. Second, being one of

the new technologies, there is a shortage of trained personnel

for PAC systems; therefore, it is often a challenge to adopt PAC

for enterprise-scale usage. In addition, such PAC frameworks

usually do not have a central system to distribute and manage

policies across various applications and infrastructures within

an organization; consequently, it becomes difficult to figure

out what parts of the environment are affected by the policies.

Third, policy databases are vital artifacts often kept on secure

premises to prevent data and information leakage. Therefore,

outsourcing policy enforcement is usually not advisable [3].

To address the above challenges, in this paper, we

propose an automation framework to ease the adoption of

PAC frameworks for business organizations. The proposed

framework, called AutoPAC, aims to enable the users to

generate PAC-compatible policy (PAC-policy) without any

programming experience, thus avoiding the learning curve

for PAC-specific languages. Moreover, the framework can

avoid the need for trained personnel. For this purpose, we

use Generative Pre-trained (GPT) Large Language Models

(LLM) to convert the natural language-specific policies

into PAC-compatible policies. However, designing such a

framework is non-trivial due to the following challenges.

3https://github.com/open-policy-agent/opa/blob/main/ADOPTERS.md
4https://discovery.hgdata.com/product/open-policy-agent

https://learn.microsoft.com/en-us/azure/governance/policy/samples/rbi-itf-banks-2016
https://learn.microsoft.com/en-us/azure/governance/policy/samples/rbi-itf-banks-2016
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https://discovery.hgdata.com/product/open-policy-agent


1 Organizational Security and Privacy: The easiest pick

to auto-generate PAC-complaint policies would be to use

public LLMs, like ChatGPT, Gemini, etc., which have widely

been explored for automated code generation [4], [5], [6].

However, such platforms have also been criticized heavily

for leaking sensitive information [7], [8]. Further, such

public models must be retrained for language and platform-

specific semantics, mainly to generate codes from natural

language descriptions [8]. Notably, Leaking information

about organizational policies may lead to serious security

vulnerabilities; therefore, retraining a public model might

lead to privacy concerns. Moreover, GPT models require fine

training with domain-specific annotated datasets, which are

difficult to gather due to the confidentiality of organizational

policies.

2 Lack of Existing Pre-trained Models: Existing PAC567

platforms often utilize domain-specific descriptive languages

to define the policy semantics. Popular GPT platforms such

as ChatGPT [9] or Gemini [10] do not perform well for

PAC-policy generation tasks as identification of keywords and

variables from the set of tokens in a declarative programming

language is difficult. Moreover, learning programming

semantics is another challenge the existing models face.

On the other hand, training models from scratch is a time-

consuming operation that may not be affordable for many

organizations.

3 Verification of Generated PAC-policies: Although LLMs

may be used to generate PAC policies, the generated policies

also need to be validated before their deployment. As dis-

cussed earlier, validating complex policies across applications

and infrastructure is not straightforward. Therefore, policy

generation and validation should come hand-in-hand to enable

organizations to use the framework reliably and with minimal

manual effort.

Considering the above challenges, the proposed framework,

AutoPAC, utilizes a personalized and private GPT platform to

generate PAC-policies from the natural language in a robust,

scalable, and privacy-preserved manner. AutoPAC is micro-

service based; thus, it can achieve rapid deployment using

a CI/CD (continuous integration and continuous deployment)

pipeline. We first create a dataset of publicly available policies,

which has been used to train the model. The framework

also requires various pre and post-data cleaning operations

to fine-tune the results. We develop a Proof-of-Concept

(PoC) implementation, which can be deployed on-premise of

an organization to avoid data leakage and requires minimal

resource footprints during training and deployment. We use the

PoC implementation to perform thorough experiments on fine-

tuning, hyper-parameter tuning & model selection. In addition,

5https://www.openpolicyagent.org/
6https://learn.microsoft.com/en-us/azure/governance/policy/overview
7https://www.pulumi.com/docs/using-pulumi/crossguard/get-started/

we develop a unit and integration testing pipeline for compre-

hensive testing ascertaining the sanity of the generated PAC-

policies. Our experimental observations reveal that AutoPAC

requires less than 2 seconds to generate individual policy.

Upon further testing with 116 different test cases, we observed

that AutoPAC provides almost 94% accuracy in generating the

PAC-policies.

The rest of the paper is organized as follows. We first dis-

cuss the related literature to highlight existing code generation

approaches through LLMs and their limitations in Section II.

Section III describes some of our initial experimentation with

the existing tools to explain the need for the proposed frame-

work. Section IV and Section V describe the architectural

considerations and implementation challenges of the proposed

system. In Section VI, we describe the salient features of

AutoPAC by experimental evaluation. Finally, Section VII

concludes the paper.

II. RELATED WORK

This section discusses the related literature that has explored

the use of LLMs for code generation and analysis with a high-

light on their limitations for PAC-complaint code generation.

In this context, we also summarize the works that target to

automate policy generation and compliance.

A. Code Generation and Understanding with LLMs

Recent advancements in publicly available LLM tools and

models are popular in various use cases, including automated

code generation. Existing works [4], [5], [6] have described

approaches to generate source codes from prompts. However,

automated source-code generation scenarios are beneficial

where end users are interested in generating programs that can

save time and manual effort. The difficulty in understanding

the generated code led to the use of LLMs for code explana-

tion [11], [12] and code understanding [13], [14]. These works

proposed using LLMs to develop web browser extensions or

plugins to help users understand code snippets. Apart from

these, LLMs were also utilized in scenarios where codes

were incomplete or incomprehensible for code repair [15].

Notably, these works have primarily analyzed how LLMs

can effectively assist code-writing and code-analysis tasks,

although concerns about their accuracy in generating platform-

specific codes exist. A case study [4] showcases various LLMs

having maximum accuracy in terms of functional correctness

of the programs as 76.2% with GPT-4, 67.1% with Phind-

CodeLlama, and 64.6% with WizardCoder-CodeLlama. More-

over, the existing works have proposed approaches to fine-

tune LLMs, particularly for functional languages like C, C++,

Python, Java, etc., while to the best of our knowledge, no

works consider policy-specific languages like REGO.

B. Domain-specific Code Generation

Specialized LLM-based solutions have emerged across var-

ious industries as business organizations realized the impor-

tance of LLMs in increasing efficiency by avoiding sev-

eral manual efforts. For instance, LLMs are being used in

https://www.openpolicyagent.org/
https://learn.microsoft.com/en-us/azure/governance/policy/overview
https://www.pulumi.com/docs/using-pulumi/crossguard/get-started/


healthcare industries [16], [17], [18] ranging from day-to-

day documentation, sorting feedback of patients, providing

an interface for patients to fetch widely available medicinal

data to create multiple-choice questions for exams [19] or

as self-learning tools [20]. However, we observe that the

creation of industry-specific solutions integrating LLMs faces

a major hurdle of domain adaptation. Integration can be best

utilized when LLMs are trained on the data specific to the

domain, thus improving adaptability and accuracy. In contrast

to using general-purpose models, we observe from recent

literature [21], [22] that domain adaptation is a much more

efficient approach for target organizations.

C. LLMs for Policy Generation

Building on the pretext that LLMs are being rapidly adapted

for code generation, there emerged the idea to use them for

policy generation [23] as well. Available literature emphasizes

solutions that have tried to convert user intent into application-

specific policies [24]. Robotics at Google [25] also presented

using LLM models to produce robot code, i.e., planning a

sequence of steps from natural language instructions. Among

the existing works, a proprietary platform called ARMO [26]

is capable of generating REGO-compatible PAC-policies to en-

sure Kubernetes security. However, we aimed to design a more

generalized and useful tool for different business scenarios.

Notably, ARMO relies on unit-test-based validation, which may

not be feasible for large-scale automation. Moreover, privacy

concern significantly hinders adoption of ARMO. Although

there exist a few LLM-based natural language to program

generators (like NL2Code [27], CodeX [28], Code Llama [29],

StarCoder [30], Tabnine8, etc.), training domain-specific lan-

guages like REGO requires significant resources. Furthermore,

LLMs tend to suffer from hallucinations [31], [32], [33], [34]

where they provide code snippets that are not complete or

are incorrect. Notably, code completion tools are available for

integration in various IDEs. GitHub Copilot [35], powered by

OpenAI’s CodeX, can be used for fetching code suggestions

in IDEs as well as seeking chatbot inputs in code. IntelliCode

Compose [36], a multilingual code completion tool, utilizes

GPT for Code (GPT-C), which is a variant of the GPT-2

model trained from scratch on various source codes written

in programming languages like Python, C#, JavaScript and

TypeScript. While powerful and robust, this model is mainly

based on the code structure and context already available in the

code, not on natural languages. Hence, even if fine-tuned for

policy-specific coding languages like REGO, its purpose is less

suited for PAC-compliant code generation that needs specific

semantics based on target infrastructure or applications.

III. BACKGROUND AND PILOT STUDY

Several NLP-based generative tools like ChatGPT [9], Gem-

ini [10], etc., can generate source codes from the prompt

expressing the objectives in natural language. Therefore, we

first conduct a pilot study to try the prompt engineering ap-

proaches to generate PAC policies for a given scenario. Prompt

8https://www.tabnine.com/

(a) Query used with the expected outcome

1 User: Write REGO rules for Global admins and maintainers

can run any query

2 Expected: allow {

3 object.type == "targeted_query"

4 subject.global_role == admin

5 action = run

6 }

7 allow {

8 object.type == "targeted_query"

9 subject.global_role == maintainer

10 action = run

11 }

12 allow {

13 object.type == "query"

14 subject.global_role == admin

15 action = run_new

16 }

17 allow {

18 object.type == "query"

19 subject.global_role == maintainer

20 action = run_new

21 }

(b) Response from ChatGPT which has partial similarity with the
expected outcome

1 ChatGPT: allow_run_query {

2 action == "run_query"

3 user.role == "global_admin"

4 }

5 allow_run_query {

6 action == "run_query"

7 user.role == "maintainer"

8 }

(c) Subsequent prompts used to force ChatGPT to generate a compatible
PAC for the target query

1 User (Prompt2): Use object.type==targeted_query or query

and regenerate

2 User (Prompt3): Use subject.global_role=admin and action

== run/run_new and regenerate

Fig. 1: Example Query and Responses from ChatGPT-4

engineering is essential in such cases as the public LLMs

are trained with general-purpose texts. Therefore, they may

need platform-specific guidelines through prompt engineering

to generate accurate PAC policies. For this pilot study, we

consider Role-based Access Control (RBAC) for Amazon-

AWS Multi-tenant scenario as a use case9. This particular

use case contains 2 tenants, each tenant having 5 users. The

users access services from one micro-service, which provides

“read”, “write,” and “run” services depending on the tenant

category and user role. For the experimental purpose, we have

used Open Policy Agent (OPA) [2] to represent the PAC

policies. As mentioned earlier, OPA uses REGO [37] as the

policy declarative language.

In the first pilot study, we used the ChatGPT V4-based

conversational tool to generate a set of equivalent PAC poli-

cies. Although ChatGPT or similar public LLMs have privacy

concerns, as we discussed before, our objective here is to

check (a) how easy it is to generate a PAC policy from

9motivated by https://docs.aws.amazon.com/prescriptive-guidance/latest/
saas-multitenant-api-access-authorization/opa-abac-rbac-examples.html

https://www.tabnine.com/
https://docs.aws.amazon.com/prescriptive-guidance/latest/saas-multitenant-api-access-authorization/opa-abac-rbac-examples.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/saas-multitenant-api-access-authorization/opa-abac-rbac-examples.html


natural language descriptions and (b) how good the generated

policies are in terms of platform compatibility. Notably, a

compatible policy satisfies all the manually generated test

cases during OPA testing under various platform constraints.

The major challenge, in this case, is the construction of

appropriate queries to obtain the compatible PAC policy as

a response from the ChatGPT. We observed that, although the

ChatGPT-generated responses (see Figure 1b) closely match

with the expected outcome (see Figure 1a), it requires fine-

tuning to obtain a compatible PAC. Using standard prompt

engineering techniques10, on average, it takes ≈ 4 prompts to

get the compatible rules if the queries are invoked under the

same topic/chat thread 11. For example, the ChatGPT response

generates a compatible PAC after using the 2 more queries sub-

sequently in the same thread (Listed in Figure 1c). However,

one primary concern in using ChatGPT for these types of tasks

is related to privacy (as discussed in Section I: 2 ), which

leads to information leakage during this prompt engineering.

For example, in the given use case (Figure 1), the system

admin needs to disclose the exact fields and variables (e.g.,

subject.global_role, action) used in their system.

To avoid such issues with data privacy, we next explore

whether private LLMs like PrivateGPT [38] can work as an

alternative. Consequently, in our second pilot study, we use

PrivateGPT which utilizes a light-weight pre-trained model

(GGML [39]) and can be custom-trained (known as “inges-

tion”) on particular topics. We have deployed the model using

a local server with 8 CPU cores and 32GB of RAM as

recommended. We have used the AWS documentation (afore-

mentioned) to ingest the model. However, we observed that

the results were not always suitable. For example, Figure 2c

presents one generated rule for a particular query string as

given in Figure 2a. The PrivateGPT-generated PAC is too

generic and requires significant training samples to fine-tune

it to obtain the desired results. Another observation is that

PrivateGPT generates different outputs while querying with

the exact prompt multiple times, and the generated outputs

are sometimes incoherent12 as shown in Figure 2c. Moreover,

the output generation often takes minutes to respond, and

the underlying micro-services crash too frequently, which

motivated us to come up with a stable architecture that can

provide better responses.

Take Away and Design Goals. The pilot study shows that

while public LLMs like ChatGPT need prompt engineering

and are thus vulnerable to privacy attacks, private LLMs

like PrivateGPT does not provide a robust, consistent output.

Consequently, we target to develop a lightweight pluggable

framework for domain-specific adaptations over PrivateGPT

to achieve automated PAC policy generation. Accordingly,

we consider the following design goals for the proposed

architecture;

G1. The proposed framework should need minimum domain

10https://www.promptingguide.ai/techniques
11https://community.openai.com/t/chat-thread-functionality/60852
12The root causes are investigated and explained in Section V.

(a) Query used with the expected outcome

1 User: Write a REGO code for AWS Role-Based Access

Control (RBAC) of users.

2 Expected: allow {

3 input.action == "read" or input.action == "write"

4 input.repo == "aws"

5 input.role == "admin"}

(b) Sample Output-1: Output is incorrect but shows some similarity with
the expected outcome

1 PrivateGPT:

2 allow {

3 resource : "aws_s3"

4 }if (resource.bucket == ’admin-users’ and action in

[’read’, ’write’])

(c) Sample Output-2: Output consisting of meaningless strings like
o<l,vl,vr,ekr,3>=

1 PrivateGPT:

2 allow if { o<l, vl 3>= aws, vr 3>= ekr }

Fig. 2: Example Responses from PrivateGPT.

Chat bot

send query 

to server

User Query
Fine-tuned model

Data
formatter

Local
verifier

Judge
LLM

send output 

for validation

TranslatorWeb Engine

Rule Validator

Domain specific
dataset

Add to dataset for further finetuning

Valid Policy: Send Policy
Invalid Policy: Ask for more details

Fig. 3: AutoPAC: Proposed Architecture.

adaptation and retraining for platform-specific PAC pol-

icy generation without a requirement of explicit prompt

engineering.

G2. The proposed framework should be scalable and easily

deployable following the CI/CD pipeline.

G3. The proposed framework should also be able to validate

the generated PAC policies to make them deployment-

ready with minimal effort.

We next discuss the details of the proposed framework archi-

tecture.

IV. PLATFORM ARCHITECTURE

The AutoPAC architecture is sub-divided into 3 major micro-

services (as shown in Figure 3): (i) Web Engine, (ii) Translator,

and (iii) Rule Validator. The micro-service architecture helps

the business administration deploy the platform seamlessly

with optimized resource footprints with load-balancing ca-

pabilities, thus lowering the response time. The Web En-

gine micro-service is a web-based conversational front-end

(chatbot) that provides the user an interface through which

they put forth the query in the Natural Language (NL).

This component complements the challenge of requiring a

complicated learning curve by providing a simple and easily

https://www.promptingguide.ai/techniques
https://community.openai.com/t/chat-thread-functionality/60852


understandable platform for the user to query even in non-

technical language, thereby reducing the need for expertise in

policy language to create organizational policies. The query

submitted by the user is processed by the Translator back-

end micro-service, which is connected with the Web Engine

over REST API. The Translator uses a fine-tuned LLM trained

explicitly in the PAC-policy language. Upon receiving the

user queries in the natural language, the Translator generates

the corresponding PAC-policies as the output. Since we use

LLMs to generate PAC-policies, the output may not always

be correct. Therefore, AutoPAC uses a separate Rule Validator

micro-service which validates the generated PAC-policies. The

Rule Validator is sub-divided into 3 modules as follows: (a)

Judge LLM, (b) Data Formatter, and (c) Local Verifier and the

working principles of the system are described as follows.

For a system that is supposed to encounter a large number

of queries, curating unit test cases for each of them and

maintaining test coverage for each generated policy may not

be a scalable task. Therefore, the generated PAC-policies are

coarsely filtered using an auxiliary LLM termed as Judge

LLM [40]. This module can verify the output policies de-

pending on various factors such as completeness, legibility,

etc. Post coarse filtration, we use fine-grained filtration using

subsequent modules. During fine-grained filtration, we use

Data Formatter module, which formats the valid outputs of

Judge-LLM using a PAC-policy language-specific “linter”13.

A linter is a tool used to identify and correct structural errors

and stylistic constructs in code. Here, the primary objective of

this module is to perform syntactic analysis of PAC-policies,

and therefore, it improves the code readability by refactoring

them. The formatted PAC-policies are further verified by the

user-provided test cases inside a Local Verifier module, which

contains a set of unit test cases for the given query provided

by the user.

The overall architectural design also helps us to future-

proof the system. It allows future adaptors to employ a

CI/CD pipeline to fine-tune it further. To show the capabilities

of this framework, we develop a Proof of Concept (PoC)

implementation as discussed next.

V. AutoPAC-OPA: POC PLATFORM IMPLEMENTATION

In order to develop the PoC implementation, we have

to custom-train the AutoPAC with a particular PAC-policy-

specific language. In our implementation, we have identified

the popular PAC platform called OPA [2] that uses REGO [37]

as the policy declarative language. Although OPA does not

provide policy enforcement services, it is compatible with mul-

tiple open-source projects [41] that can enforce the policies,

such as Kubernetes, Envoy, Express, Terraform, Linux-PAM,

etc. We have created a dataset using publicly available OPA

policies to custom-train our framework, as discussed next.

A. Domain-specific Dataset

The created dataset contains REGO policies for the OPA

framework and their annotations, which constitute a brief

13https://www.openpolicyagent.org/integrations/regal/

TABLE I: Training Dataset Sourced from Github Repositories

Repository Link

18F/fleet https://github.com/18F/fleet

CptOfEvilMinions/fleet https://github.com/CptOfEvilMinions/fleet

DominusKelvin/fleet https://github.com/DominusKelvin/fleet

KarlatIwoca/fleet https://github.com/KarlatIwoca/fleet

TheDyingYAK/splunk siem https://github.com/TheDyingYAK/splunk siem

blazman/fleet https://github.com/blazman/fleet

empayre/fleet https://github.com/empayre/fleet

erikng/fleet https://github.com/erikng/fleet

fleetdm/fleet https://github.com/fleetdm/fleet

groob/fleetdm-fleet https://github.com/groob/fleetdm-fleet

kapawit/fleet https://github.com/kapawit/fleet

kolbeface/fleet https://github.com/kolbeface/fleet

kyle-humane/fleet https://github.com/kyle-humane/fleet

lizthegrey/fleet https://github.com/lizthegrey/fleet

noahtalerman/fleet-1 https://github.com/noahtalerman/fleet-1

stephanmiehe/fleet-1 https://github.com/stephanmiehe/fleet-1

weswhet/fleet https://github.com/weswhet/fleet

y0zg/fleet https://github.com/y0zg/fleet

yonnym/fleet https://github.com/yonnym/fleet

description of the rules. To obtain the REGO policies, we have

selected 19 publicly available repositories (listed in Table I)

from GitHub. The collected samples mainly contain different

types of RBAC and Attribute-based Access Control (ABAC)

policies. We have used our customized Python programs to

clean the dataset, which includes (a) segregation of comments

from the policy code and (b) automated annotations based

on the available comments in the program. We used human

annotation to label the dataset in a few situations where the

comments were unavailable. Finally, we have extracted 1100

such labeled PAC-policies repositories consisting of ≈ 50

rules per repository. In total, the dataset contains approx

79, 206 word tokens. During our customized model training

phase (described next), we have sub-divided the dataset into

3 divisions (80%, 10%, and 10%) and used them for training,

validation, and testing datasets, respectively.

B. Training System

We used a workstation with Ubuntu 20.04.6 and Linux

kernel 5.15.0−83−generic for custom training purposes. The

system is equipped with 20 GB RAM, 16 CPU cores, and

12GB GPU memory with CUDA 12.2 support. We have

used Python-3.10.14 with Conda-24.1.2 for the LLM model

training. In this paper, we have adopted the transfer learning

approach where we have used a pre-trained model and fine-

trained it further with a supervised REGO-specific dataset. The

functional validation and accuracy of the output is measured

by the Rule Validator which tests the rules on their syntactical

validity and legibility as well as their functional efficiency and

provides a score based on the number of test cases passed.

C. Model Selection

In the case of any standard LLM-based transfer learning

approach, the choice of the initial LLM model is crucial. In

this work, we have tested with 3 existing models as discussed

next.

1) gpt4all: As mentioned in Section III, our initial testing

with gpt4all-ggml [39] was not satisfactory, and the re-

sults generated were not stable most of the time. Upon further

investigation, we found that this discrepancy is attributed to the

https://www.openpolicyagent.org/integrations/regal/
https://github.com/18F/fleet
https://github.com/CptOfEvilMinions/fleet
https://github.com/DominusKelvin/fleet
https://github.com/KarlatIwoca/fleet
https://github.com/TheDyingYAK/splunk_siem
https://github.com/blazman/fleet
https://github.com/empayre/fleet
https://github.com/erikng/fleet
https://github.com/fleetdm/fleet
https://github.com/groob/fleetdm-fleet
https://github.com/kapawit/fleet
https://github.com/kolbeface/fleet
https://github.com/kyle-humane/fleet
https://github.com/lizthegrey/fleet
https://github.com/noahtalerman/fleet-1
https://github.com/stephanmiehe/fleet-1
https://github.com/weswhet/fleet
https://github.com/y0zg/fleet
https://github.com/yonnym/fleet


inefficient embedding vector representation, which represents

the relationship between the word and its contextual meaning

of the model. During the training phase, the vector store, which

refers to a mechanism used for efficiently storing and retriev-

ing vector representations of the data (typically embeddings),

is getting updated with the metadata used for training. After

the training we observed that various program-specific iden-

tifiers were misrecognized such as special symbols like three

“==”, identifiers like “vlan” were incorrectly identified as

“3 >=” and “vl” respectively which leads us to the conclusion

that the embedding was improper and sometimes arbitrary. Our

analysis reveals that the primary reason lies in the Byte-Pair

encoding (BPE) scheme used by the model, which often breaks

the identifiers used in the source code into sub-strings, which

leads to a loss of contextual information that is important for

PAC policies. The generated response lacks sanity even after

ingesting documents containing multiple REGO rules. Based

on the intuition that gpt4all-ggml belongs to the GPT

family, which uses the decoder-only transformer architecture,

it lacks deep comprehension of the entire input sequence.

2) t5-base: Next, we focused on the models that use

decoder-encoder transformer architecture to overcome the

above issue during model training. Loosely categorizing the

PAC-policies as text data, we used Text-to-Text Transfer

Transformer (t5-base) [42] as the base model for the

Translator. We observed that even though this model uses

BPE as used in the previous case, it could extract better

contextual information from the submitted dataset of REGO

codes. However, as the t5-base model uses Masked Span

Prediction (MSP)14, it is more sensitive towards declarative

languages. Given that the t5-base has been predominantly

trained on natural language corpus, it becomes less sensitive

to the keywords used in programming languages. This can be

attributed to the fact that t5-base’s pre-training involves

span corruption, where the tokens of arbitrary lengths are

masked, and the model is tasked with predicting them, thus

improving context awareness. In the case of source codes,

language-specific syntax, data types, control structures, or

other structural features of codes need to be considered,

which the t5-base does consider effectively. However, a few

programming language-specific vital tokens (such as colons,

parenthesis, identifiers, etc.) were incorrectly identified due to

the partial masking of tokens. As an effect, this model disrupts

the code structure during training, resulting in the generation

of non-compatible REGO rules observed in Figure 4.

3) codet5-small: To overcome the above issue, we fi-

nally selected CodeT5-small15 which has been pre-trained

in programming languages like Python, C++, JAVA, etc.,

and was able to learn the program structure of REGO

including identifiers, keywords, colons, parenthesis, etc.

CodeT5-small employs a three-step pre-training [43] as

follows; (a) Identifier-aware MSP with whole word masking,

(b) Identifier Tagging, and (c) Masked Identifier Prediction

14Tokens are masked arbitrarily over their lengths, often partially, and is
used to generate the contextual information

15https://huggingface.co/Salesforce/codet5-small

1 User: Write a REGO rule to provide admin access to read and

write if data.repo==aws

2 Expected: allow {

3 input.action == "read" or input.action == "write"

4 input.repo == "aws"

5 input.role == "admin"}

6 PrivateGPT: tm09in if dr==aws, c=c and ixrnsx6k. kr.

Fig. 4: Sample output using t5-base for the given query
generates meaningless characters like tm09in, ixrnsx6k, kr
due to incompatible encoding mechanism.

(MIP). Identifier-aware MSP ensures that complete words

(especially identifiers) and significant tokens in the code are

adequately masked. The approach to treating identifiers as

whole units rather than partial tokens prevents disruption of

the code structure and allows the model to better understand

and predict identifiers in context. On the other hand, Identifier

Tagging enhances the model’s understanding of identifiers

by marking them separately from the used variables in an

approach similar to syntax highlighting. Masked Identifier

Prediction instructs the model to precisely mask the identifiers

(e.g., variable names, function names) and it is trained to

predict these masked identifiers. Specialized masking helps

improve the model’s ability to anticipate and understand the

roles of different identifiers in the code. Our experimental

observation reveals that, with the fine-tuned CodeT5-small

model, the generated PAC-policies codes become acceptably

sane most of the time. For example, in Figure 5, the generated

REGO codes are complete with parenthesis, semicolons, etc.

Therefore, for the rest of the PoC implementation, we have

continued to use CodeT5-small as the selected model.

1 User: Write a REGO rule to provide admin access to read and

write.

2 Expected: allow {

3 action == "read" or action == "write"

4 repo == "aws"

5 role == "admin"}

6 PrivateGPT: allow {

7 global_role == admin

8 action == write/read

9 repo == aws}

Fig. 5: Sample output generated using CodeT5-small which
closely matches with the expected outcome.

D. Model Fine-Tuning

With the selected model, we started the domain-specific

fine-tuning process. During the fine-tuning procedure using

standard transfer learning approaches, we have tokenized

our dataset (as described in Section V-A) into a maxi-

mum of 128 input and output tokens, which were de-

cided based on the highest length of the PAC-policy avail-

able in the dataset. We have used cross-entropy as

the loss function and decoupled weight-decay Adam

optimizer. The training loss function is defined as the

cross-entropy loss over the model’s output from the training

dataset. In contrast, the validation loss function corresponds to

https://huggingface.co/Salesforce/codet5-small
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Fig. 6: Cross Entropy Loss during training.

TABLE II: Hyper-parameters used during fine-tuning

Hyper-parameters Value Hyper-parameters Value

Min. Input Tokens 128 Max. Output Tokens 128

Training batch size 8 Validation batch size 2

Epochs 8

the output from the validation dataset. Our observed training

and validation losses per step are shown in Figure 6. We also

observed that training over 8 epochs leads to validation loss

greater than the training loss. Therefore, we keep 8 epochs for

training to avoid over-fitting. From our dataset size of 1100

samples, we choose 80% (880 samples) for training. The batch

size 8 indicates that during each iteration, the model processes

8 samples at a time, which amounts to 110 iterations per

epoch, totaling 880 iterations over 8 epochs. We choose to

use a training batch of size 8 and a validation batch of size 2

based on optimizing training over the available CPU and GPU

resources and considering the prevention of overfitting the

model to training data. The remaining hyper-parameters were

selected based on experimentation and are listed in Table II.

Once the training is complete, the generated fine-tuned model

is used in our implemented AutoPAC.

E. Implementation of Components

We have deployed the individual micro-services using

Docker to achieve micro-servicification. The details about

the components are as follows.

1) Web Engine: The Web Engine component uses

ReactJS to provide the chatbot interfaces to the end users

over the web interface. We have observed that this component

can behave well with 1 vCPU core and 1GB of RAM. The

end-users’ queries are forwarded to the Translator, and the

response is displayed in the GUI.

2) Translator: The Translator engine has a custom Python-

Flask server, allowing other components to access the services

via the REST API. The incoming user queries to the Flask

server are resolved via internal API calls, resulting in the

generated REGO rules being forwarded to the Validator module

via the REST API. The post-validated policies are eventually

sent as a response to the Web Engine. The component is

resource-provisioned for optimum performance using 2 CPU

cores and 3GB of RAM.

3) Rule Validator: The output is further processed through

an on-premise Rule Validator to avoid incomplete and ir-

relevant results generated by the Translator. The generated
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Fig. 7: Unit Testing Comparison of AutoPAC-OPA, ChatGPT and
Gemini in Local Verifier.

REGO policies were sent to the publicly available LLMs like

ChatGPT [9], which acts as the Judge LLM. Although these

LLMs themselves can not ensure the guaranteed correctness

of the generated PAC-policies, it could still be used to separate

out the same PAC-policies from the malformed/incorrect ones.

In this case, we emphasize that this testing methodology

during fine-tuning does not affect organizational security as the

training dataset is publicly available and does not leak sensitive

organization-specific policies. Moreover, the user can turn off

this verification process and solely rely on the subsequent

filtration processes using Linter and unit test cases.

Post Judge-LLM filtration, the generated programs are for-

matted using the OPA linter module, which checks for the

policy syntax and refactors the code into a readable format.

In the case of user-provided unit-test cases, the rule is further

tested using an OPA unit testing framework, which provides

the number of passed test cases along with the generated REGO

rules.

VI. EXPERIMENTAL RESULTS

We have tested the efficacy of AutoPAC-OPA via two

mechanisms: (a) Unit test-case validation and (b) using third-

party open source LLMs such as ChatGPT-4 and Gemini.

For the unit-test-based evaluation, we have shortlisted 10

annotations from our testing dataset (as listed in Table IV) and

transformed the annotations into queries. We have manually

created 15 − 25 unit test cases for each query depending

on the complexity of the expected REGO rules. We have

used the Local Verifier module to test AutoPAC-OPA and

compared its accuracy with the existing ChatGPT and Gemini-

generated rules (see Table III). In summary, the results (see

Figure 7) reveal that, for 6 queries out of the 10 test queries,

AutoPAC-OPA provided better performance than ChatGPT and

Gemini. On the other hand, Gemini and ChatGPT outperform

AutoPAC-OPA in one (Query-2) and two (Query-5&7) test

queries, respectively. For one query (Query-8), AutoPAC-OPA,

ChatGPT, and Gemini gave equal accuracy.

As generating exhaustive unit testing test cases for a more

extensive test dataset is infeasible, we have used ChatGPT-

4 to verify the results. We have used Selenium scripts to



TABLE III: Responses Comparison: For the given query, responses generated by each tool are presented along the passed unit test-cases out
of 14 test-cases

User: Any user can read/write their own sessions

AutoPAC Gemini ChatGPT

1 allow {

2 object.type == "session"

3 subject.global_role == admin

4 action == [read, write][_]

5 }

1 allow {

2 input.object.type == "session"

3 input.subject.id == input.object.

user_id

4 input.action == "read" ||

5 input.action == "write"

6 }

1 allow {

2 input.action == "read"

3 input.object.type == "session"

4 }

5 allow {

6 input.action == "write"

7 input.object.type == "session"

8 }

Test cases passed:(12/14) Test cases passed:(0/14) Test cases passed:(9/14)

TABLE IV: List of Queries Used for Unit Testing

Query

Number

Query Description

Query 1 Any user can read/write own session.

Query 2 Any logged in user can read global config.

Query 3 Only global admins and maintainers can read/write packs.

Query 4 Team maintainers can read for appropriate teams.

Query 5 Team admin, maintainer, observer plus and observer running an

observers can run query that belongs to their team and there

are no target teams.

Query 6 Global admins, maintainers, observers and observer plus can

read all software.

Query 7 Global gitops can write MDM Apple settings.

Query 8 Global admins can read and write Apple devices.

Query 9 If role is observer on any team, can read team details.

Query 10 Only global admins and maintainers can read and write labels.

TABLE V: Accuracy of AutoPAC-
OPA using ChatGPT

Valid Invalid Incomplete

94% 3.4% 2.6%

TABLE VI: Similarity Score
with Gold Standard

Sample ID 1 2 3 4

Score 0.95 0.95 0.36 0.36

automate the rule checking for this purpose and observed

that, out of 116 generated REGO rules, 94% were approved

by ChatGPT. Among others, 3.4% were identified as wrong,

and 2.6% resulted in syntactically correct but incomplete

rules without any conditions to check for (see Table V).

Upon further investigation, we observe that (see Table VI)

the cosine similarity score between the Gold Standard (from

the annotated Dataset) and the generated REGO rule is very

similar for 2 out of 4 failed queries. The generated rules

and the corresponding Gold Standard rule are presented in

Table VII, which justifies that, even among the failed queries

(as evaluated by Judge-LLM), there are a few cases that require

minor token alteration to fix the problem.

During the experimentation, we also observed that the

responses for the queries require 1.23 ± 0.27 seconds to

generate the rules. Moreover, the average CPU and memory

utilization of the Translator micro-service is approximately

0.13% and 2.2GB, which justifies the light-weighted nature

of the implementation.

TABLE VII: Output Comparison for Failed Queries

AutoPAC-OPA generated From Dataset Score

team role(subject,

subject.teams[ ].id) == maintainer

action == run }

team role(subject,

subject.teams[ ].id) == admin

action == run new }

0.95

team role(subject,

subject.teams[ ].id) == maintainer

action == run }

team role(subject,

subject.teams[ ].id) == admin

action == run new }

0.95

team role(subject, team id) ==

[admin, maintainer][ ] }
team role(subject,

subject.teams[ ].id) ==

[admin,maintainer][ ] action ==

run new }

0.36

team role(subject, team id) ==

[admin, maintainer][ ] }
team role(subject,

subject.teams[ ].id) ==

[admin,maintainer][ ] action ==

run new }

0.36

VII. CONCLUSION AND FUTURE WORK

In this work, we have proposed AutoPAC, a framework

to convert natural language-based policies into PAC-policies

with the help of LLM. We have created an annotated dataset

based on publicly available PAC-policies to fine-tune the LLM.

The proposed architecture provides a lightweight, robust, and

practical approach to utilizing private LLMs for infrastructure-

specific PAC policy generation by combining microservice-

based deployment architecture with organization-driven query

format processing at its core. As a future extension of this

work, we plan to make the setup more scalable. We also

plan to test with the more heavyweight models like CodeX

and Code Llama in the Translator architecture and measure

if we can seek more accuracy regarding rule structure while

optimizing resource consumption. In scenarios where AutoPAC

gives slightly inaccurate PAC-policies, we plan to conduct a

detailed analysis of the similarity using various metrics in

future updates. Nevertheless, to the best of our knowledge,

AutoPAC provides first-of-its-kind private LLM architecture

to automate organization and platform-specific PAC policy

generation based on natural language queries, which can help

organizational governance and IT services automation.
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