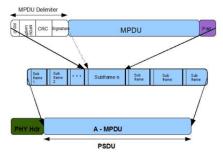
Defending Concealedness in IEEE 802.11n

Sandip Chakraborty¹², Subhrendu Chattopadhyay, Suchetana Chakraborty, Sukumar Nandi

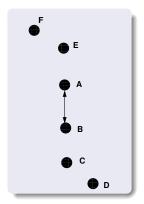
Department of Computer Science and Engineering Indian Institute of Technology Guwahati, Guwahati 781039 INDIA

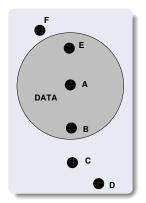
07 January, 2014

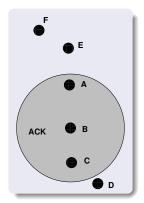

 $^{^{1}}$ This work is supported by TATA Consultancy Services (TCS), INDIA through TCS Research Fellowship program

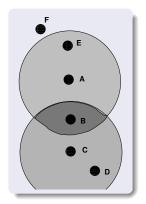
²Supported by COMSNETS 2014 Travel Grant

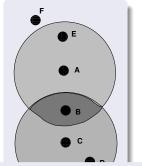
Preface: IEEE 802.11n

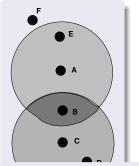

- High speed extension for wireless networks: 600 Mbps
- Extensions over IEEE 802.11b/g
 - MIMO Spatial diversity and spatial multiplexing
 - Channel Bonding: Combine two 20 MHz channels to one 40 MHz channel (also knowm as 20/40 semantics)
 - MAC Layer: Frame aggregation and block acknowledgements



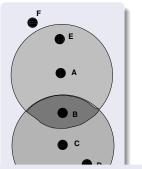


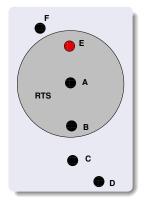




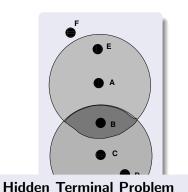

Two-way handshaking (Basic Access)

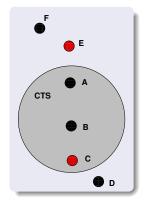
Hidden Terminal Problem

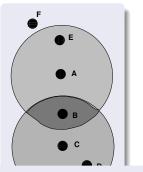

Two-way handshaking (Basic Access)

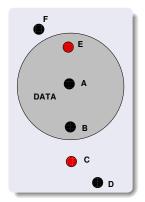

Hidden Terminal Problem

Two-way handshaking (Basic Access)

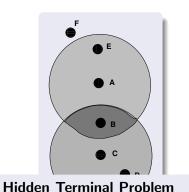


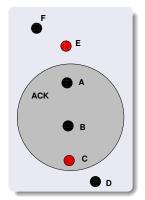

Hidden Terminal Problem

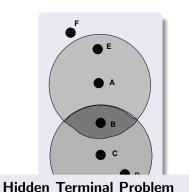

Two-way handshaking (Basic Access)

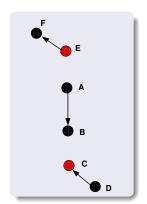


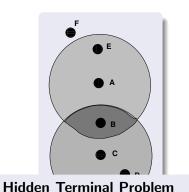
Two-way handshaking (Basic Access)

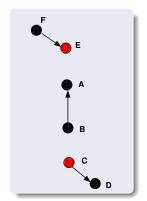


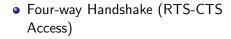

Hidden Terminal Problem

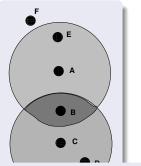

Two-way handshaking (Basic Access)

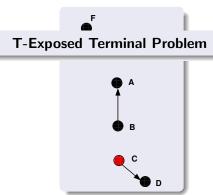



Two-way handshaking (Basic Access)



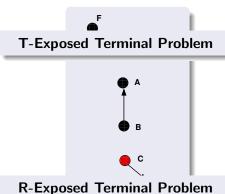

Two-way handshaking (Basic Access)





Two-way handshaking (Basic Access)

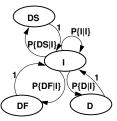
Hidden Terminal Problem



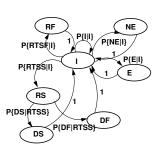
Two-way handshaking (Basic Access)

Hidden Terminal Problem

Hidden and Exposed Nodes

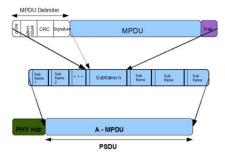

- Extensive studies have been carried out to mitigate with hidden and exposed nodes problem.
- For, IEEE 802.11b/g networks, solutions of hidden and exposed nodes require extra controlling overhead, which severe for a low to moderate loaded network.
- Four-way access may sometime impact in a negative performance³
- Is the scenario similar for IEEE 802.11n high data rates?

³R. Bruno, M. Conti, and E. Gregori. "IEEE 802.11 optimal performances: RTS/CTS mechanism vs. basic access." IEEE PIMRC, 2002.


IEEE 802.11n: Basic Access vs RTS/CTS Access

- Model basic access and RTS/CTS access, considering
 - High data rates
 - Frame aggregation (A-MPDU): Channel is hold once access is successful
 - Block acknowledgements (BACK) : Loss in BACKs result in the loss in complete A-MPDU
 - A mesh network scenario: Contention is high

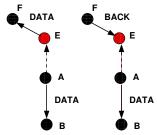
Basic Access



RTS/CTS Access

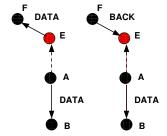
IEEE 802.11n: The Optimal Access

 Cost of expode nodes is very high: Channel is reserved for a large amount of time once access is successful.



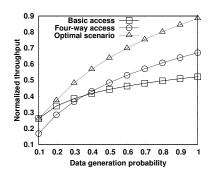
Source:http://www.eetimes.com/document.asp?doc_id=1278239

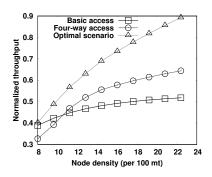
IEEE 802.11n: The Optimal Access


- However, access synchronization is crucial,
 - Possibility of data-BACK collision

IEEE 802.11n: The Optimal Access

- However, access synchronization is crucial,
 - Possibility of data-BACK collision




Optimal Access:

- No hidden nodes
- No exposed nodes
- DATA-BACK collisions are avoided

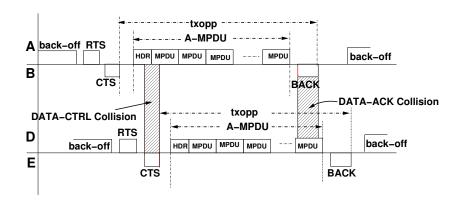
Outcomes from the Model: Numerical Results

Key Observations

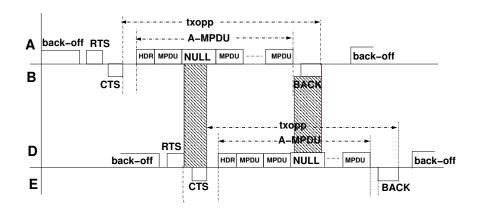
- Can not avoid hidden nodes: effect of data loss is significant at high data rates, with moderate contention (basic access outperforms RTS/CTS only at very low contention).
- Exposed nodes result in severe underutilization.
- Keys for the good (near-optimal) performance:
 - Avoid hidden nodes (RTS/CTS access)
 - Allow transmissions for the exposed nodes (deviation from the original four-way access)
 - Avoid data-BACK collision whenever possible (opportunistic access)

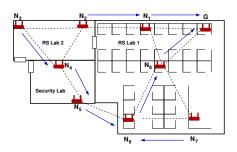
Opportunistic Four Way Access

- Allow transmission to the exposed nodes, but avoid hidden nodes
 - Maintain list of active nodes from which RTS and CTS are overheard (RTS_{act} and CTS_{act}).
 - \mathcal{N}_S : Set of one hop neighborhood for node S.
 - Node S wants to transmit to node R; Node S sends a RTS if $CTS_{act} = NULL$ and $\forall RTS_{act}.DST \notin \mathcal{N}_S$
 - $CTS_{act} = NULL$ implies no active receiver in the neighborhood
 - RTS_{act}.DST also implies a receiver, so the second condition ensures no possible receiver in the neighborhood for the next few slots (there exists no such nodes in the neighborhood that has received a RTS, but yet to reply for a CTS)
 - Allows transmission for the T-Exposed nodes.

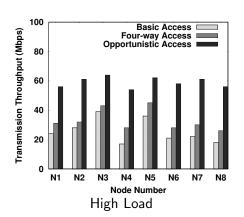

Opportunistic Four Way Access

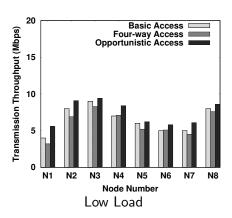
- Node R receives an RTS from node S. It replies back with a CTS (wants to act as a receiver) only if,
 - RTS_{act} = NULL, ensures no active transmitter in the neighborhood
 - $\forall CTS_{act}.DST \notin \mathcal{N}_R$, ensures no CTS is overheard where transmitter is in the neighborhood (supports communication asymmetry)
 - Allows transmission for the R-Exposed nodes.


Opportunistic Access: Interference


Opportunistic Access: Interference Mitigation

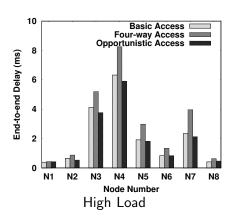
Testbed Evaluation

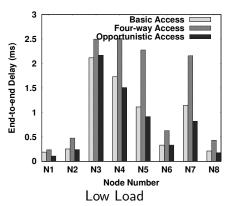




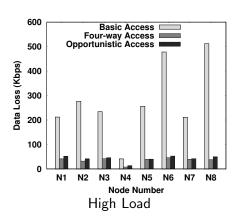
- Router: RaLink RT-3352 RoC: 2T2R MAC/BBP/PA/RF, 400MHz MIPS24KEc CPU, 64MB of SDRAM and 32MB of Flash
- IEEE 802.11n: 300 Mbps, channel bonding
- Open80211s: http://www.open80211s.org
- Linux Kernel 2.8.54
- TCP (FTP) and UDP (TFTP) using iperf (http://iperf.sourceforge.net/)
- Semi-indoor environment, Tx Power 16dBm, Rx Sensitivity 0 dBm (45-55 mt in indoor)

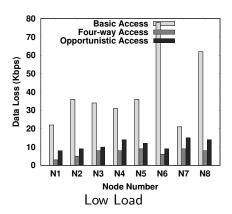
Performance: Throughput



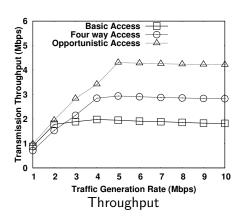


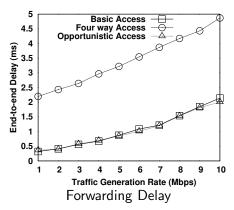
Performance: Forwarding Delay



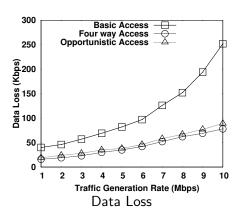


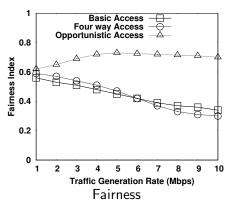
Performance: Data Loss





General Performance Metrics





General Performance Metrics

Conclusion with Some Comments

- Explores the severity of hidden and exposed terminal problems over IEEE 802.11n
- Proposed an opportunistic solution to improve MAC performance over IEEE 802.11n
 - Distributed as well as localized
 - Less control overhead
 - Improved spatial reuse
- This paper has considered IEEE 802.11n with A-MPDU aggregation.
 However the compatibility of this solution with the existing basic and four way access is further required to be investigated.
 - How does the opportunistic solution perform in mix network of basic access, four-way access and opportunistic access?
 - How does the proposed solution scale with number of nodes in the network?

Conclusion with Some Comments

- Explores the severity of hidden and exposed terminal problems over IEEE 802.11n
- Proposed an opportunistic solution to improve MAC performance over IEEE 802.11n

