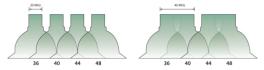
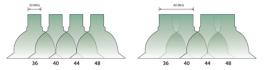
ES2: Managing Link Level Parameters for Elevating Data Rate and Stability in High Throughput WLAN

Sandip Chakraborty, Subhrendu Chattopadhyay

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

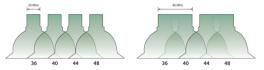
Department of Computer Science and Engineering Indian Institute of Technology Guwahati



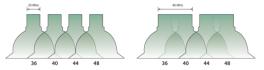

- High-throughput extension for wireless local area networks (WLAN):
 IEEE 802.11n (600 Mbps), IEEE 802.11ax (Gbps wireless)
- Supports a large set of link control parameters:

- High-throughput extension for wireless local area networks (WLAN):
 IEEE 802.11n (600 Mbps), IEEE 802.11ax (Gbps wireless)
- Supports a large set of link control parameters:
 - Number of MIMO Spatial Streams

- High-throughput extension for wireless local area networks (WLAN):
 IEEE 802.11n (600 Mbps), IEEE 802.11ax (Gbps wireless)
- Supports a large set of link control parameters:
 - Number of MIMO Spatial Streams
 - Channel Bonding: IEEE 802.11n supports 20 and 40 MHz, IEEE 802.11ac supports 20, 40, 80, 120 MHz



- High-throughput extension for wireless local area networks (WLAN):
 IEEE 802.11n (600 Mbps), IEEE 802.11ax (Gbps wireless)
- Supports a large set of link control parameters:
 - Number of MIMO Spatial Streams
 - Channel Bonding: IEEE 802.11n supports 20 and 40 MHz, IEEE 802.11ac supports 20, 40, 80, 120 MHz

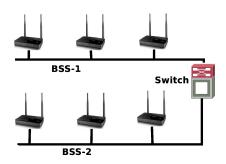

 Advanced Modulation and Coding Schemes – Supports higher physical data rates

- High-throughput extension for wireless local area networks (WLAN):
 IEEE 802.11n (600 Mbps), IEEE 802.11ax (Gbps wireless)
- Supports a large set of link control parameters:
 - Number of MIMO Spatial Streams
 - Channel Bonding: IEEE 802.11n supports 20 and 40 MHz, IEEE 802.11ac supports 20, 40, 80, 120 MHz

- Advanced Modulation and Coding Schemes Supports higher physical data rates
- Frame aggregation and Block Acknowledgement Reduce channel access overhead

- High-throughput extension for wireless local area networks (WLAN):
 IEEE 802.11n (600 Mbps), IEEE 802.11ax (Gbps wireless)
- Supports a large set of link control parameters:
 - Number of MIMO Spatial Streams
 - Channel Bonding: IEEE 802.11n supports 20 and 40 MHz, IEEE 802.11ac supports 20, 40, 80, 120 MHz

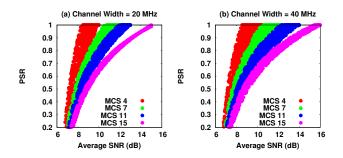
- Advanced Modulation and Coding Schemes Supports higher physical data rates
- Frame aggregation and Block Acknowledgement Reduce channel access overhead
- Short Guard Intervals Saves guard time when interference is less


Every feature has its own pros and cons:

- Every feature has its own pros and cons:
 - **Channel Bonding:** Data loss is more for wider channels channel bonding is not good when channel error rate is high

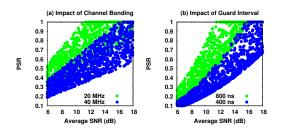
- Every feature has its own pros and cons:
 - **Channel Bonding:** Data loss is more for wider channels channel bonding is not good when channel error rate is high
 - Modulation and Coding: Higher modulation and coding requires higher signal strength to sustain – high modulation and coding rate may not be suitable when SINR is low

- Every feature has its own pros and cons:
 - **Channel Bonding:** Data loss is more for wider channels channel bonding is not good when channel error rate is high
 - Modulation and Coding: Higher modulation and coding requires higher signal strength to sustain – high modulation and coding rate may not be suitable when SINR is low
 - Frame Aggregation: Frame aggregation may result in high data loss due to channel interference


Some Observations from a Practical Testbed

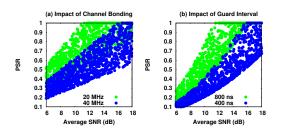
Testbed Configurations:

- Ralink RT-3352 Wireless Router-on-chip supports IEEE 802.11n
- 2 × 2 MIMO
- Supports 20 MHz and 40 MHz at 5 GHz band 300 Mbps physical data rate
- Linux Kernel 2.4.12 openwrt supported


Observation 1: Impact of Modulation and Coding

Observations:

- Low modulation and coding levels can sustain at low SNR region provide better PSR compared to high modulation and coding values
- High modulation and coding levels provide good PSR at high SNR region
- PSR variation in significantly more in 40 MHz communication compared to 20 MHz communication.

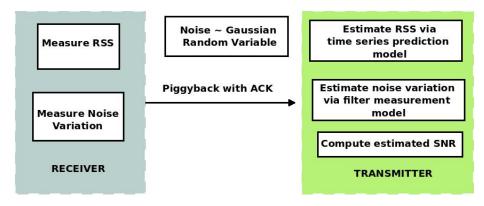

Observation 2: Impact of Channel Bonding and Guard Intervals

Observations:

- 40 MHz gets more affected due to external noise and interference
- Short guard interval (400 ns) is effective for low interference scenario

Observation 2: Impact of Channel Bonding and Guard Intervals

- Observations:
 - 40 MHz gets more affected due to external noise and interference
 - Short guard interval (400 ns) is effective for low interference scenario
- We need to develop an adaptive link parameter selection mechanism based on channel condition...

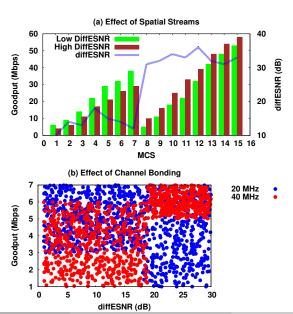

Solution Approach: Estimate, Sample and Select (ES2)

- A three step iterative process:
 - Estimate the SNR at transmitter from the measured received signal strength (RSS) at the receiver
 - Sample the feature sets based on the estimated SNR thresholds
 - Select the final data rate from the filtered samples

Estimation of SNR

- Estimation of SNR is non-trivial, because,
 - The noise level significantly depends on parametric settings (like number of spatial streams, channel width etc) → Simple subtraction of noise level from signal level does not work.
 - The transmitter needs to figure out link parameter settings, whereas SNR is measured at the receiver \rightarrow SNR prediction is required at transmitter.
 - Piggybacking SNR does not work because the link parameter settings may change!

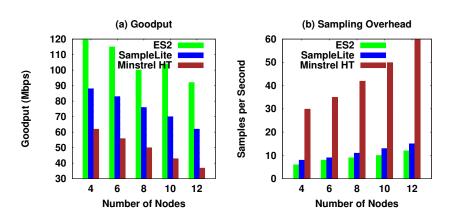
Estimation of SNR: A Kalman Filtering Approach

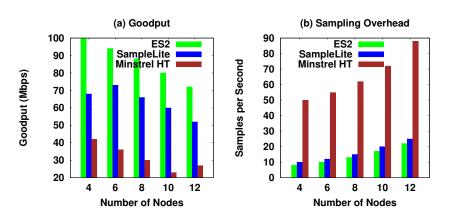

Sample Feature Set

- SNR is quite fluctuating and may not be a good choice for feature sampling.
- We use diffESNR -

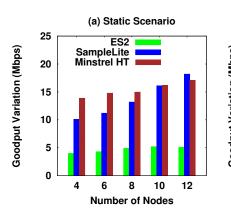
$$diffESNR_t = SNR_t(|SNR_t^2 - SNR_{t-1}^2|)$$

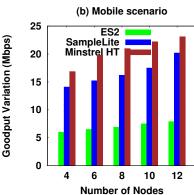
 This captures SNR fluctuation as well – if fluctuation is more, some link parameter settings become unstable.


Impact of diffESNR


Estimate, Sample and Select (ES2)

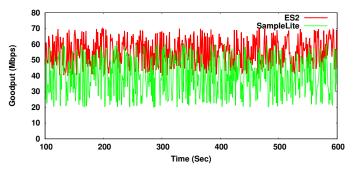
- A three step iterative process:
 - Estimate the SNR at transmitter from the measured received signal strength (RSS) at the receiver
 - Sample the feature sets based on the estimated SNR thresholds
 - Select the final data rate from the filtered samples We are left with only few options! Apply standard rate adaptation...


Protocol Performance: Static Network



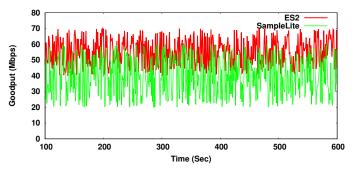
Protocol Performance: Mobile Network

Fairness: Average Link Goodput Variation



Concluding Remarks

 \bullet ES2 works well in pure IEEE 802.11n network, but the sampling does not work sometime in a mixed network (IEEE 802.11n + IEEE 802.11b/g)


Concluding Remarks

 \bullet ES2 works well in pure IEEE 802.11n network, but the sampling does not work sometime in a mixed network (IEEE 802.11n + IEEE 802.11b/g)

Concluding Remarks

 \bullet ES2 works well in pure IEEE 802.11n network, but the sampling does not work sometime in a mixed network (IEEE 802.11n + IEEE 802.11b/g)

 Can we say something about the interoperability or backward compatibility?

Thank You

