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● In traditional Monolithic applications Provenance Tracking can help

● Provenance Data is the metadata of a process (origin, history of modifications)

● To debug system vulnerabilities 

● To find the root causes behind faults, errors, or crashes over a running system

● Universal Provenance Graphs (UPG) ensures observability



Universal Provenance Graph (UPG)
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● A graph generated from provenance data is a 
Provenance Graph of a process.

● It’s a causal graph that stores the dependencies 
between system subjects (e.g., processes) and 
system objects (e.g., files, network sockets). 
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● Provides abstractions of the underlying 
infrastructure

● Operational expenditure is reduced when 
service computations are stateless, elastic, and 
distributed

● Good platform when everything is working fine.

● What happens if something is not right?
○ Too distributed

○ Observability and debugging is challenging

Serverless Computing (SLC)
4’23
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Challenge 1 – Combining application logs from different micro-services

UPG Construction in SLC - Challenges
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127.0.0.1 - - [17/Dec/2021:22:58:37 +0530] "GET /todo/hashgen.php HTTP/1.1" 200 539 "-" 
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"
127.0.0.1 - - [17/Dec/2021:22:58:45 +0530] "GET /todo/hashgen.php?get_hash=RISHABH 
HTTP/1.1" 200 594 "http://localhost/todo/hashgen.php" "Mozilla/5.0 (X11; Ubuntu; Linux 
x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"

172.18.0.1 - - [13/Jul/2022:07:49:00 +0000] "GET /login/login.php 
HTTP/1.1" 200 1226
pid = 12490, date = [1657698553278104923] 172.18.0.1 - - 
[13/Jul/2022:07:49:13 +0000] "POST /login/login.php HTTP/1.1" 302 
-

µS1

App Log 1 App Log 2

µS2 µS3



Challenge 1 – Combining application logs from different micro-services

UPG Construction in SLC - Challenges
6’23

Introduction Motivation Challenges Contributions Framework Evaluation

127.0.0.1 - - [17/Dec/2021:22:58:37 +0530] "GET /todo/hashgen.php HTTP/1.1" 200 539 "-" 
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"
127.0.0.1 - - [17/Dec/2021:22:58:45 +0530] "GET /todo/hashgen.php?get_hash=RISHABH 
HTTP/1.1" 200 594 "http://localhost/todo/hashgen.php" "Mozilla/5.0 (X11; Ubuntu; Linux 
x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"

172.18.0.1 - - [13/Jul/2022:07:49:00 +0000] "GET /login/login.php 
HTTP/1.1" 200 1226
pid = 12490, date = [1657698553278104923] 172.18.0.1 - - 
[13/Jul/2022:07:49:13 +0000] "POST /login/login.php HTTP/1.1" 302 
-

µS1

App Log 1 App Log 2

µS2 µS3

Log messages formatting, timestamp formatting, process descriptors vary



UPG Construction in SLC - Challenges
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Challenge 2 – Combining the system log with the application logs
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PHY HW

auditd logs

Apps logs

127.0.0.1 - - [17/Dec/2021:22:58:37 +0530] "GET /todo/hashgen.php 
HTTP/1.1" 200 539 "-" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; 
rv:95.0) Gecko/20100101 Firefox/95.0"
127.0.0.1 - - [17/Dec/2021:22:58:45 +0530] "GET 
/todo/hashgen.php?get_hash=RISHABH HTTP/1.1" 200 594 
"http://localhost/todo/hashgen.php" "Mozilla/5.0 (X11; Ubuntu; 
Linux x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"

{'srn': '23228', 'ts': '1639762166.872', 'type': 'PROCTITLE', 
'data': {'proctitle': 
'2F62696E2F7368002F7573722F7362696E2F73657276696365006175646974640
073746F70'}}
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Challenge 2 – Combining the system log with the application logs
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PHY HW

auditd logs

Apps logs

127.0.0.1 - - [17/Dec/2021:22:58:37 +0530] "GET /todo/hashgen.php 
HTTP/1.1" 200 539 "-" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; 
rv:95.0) Gecko/20100101 Firefox/95.0"
127.0.0.1 - - [17/Dec/2021:22:58:45 +0530] "GET 
/todo/hashgen.php?get_hash=RISHABH HTTP/1.1" 200 594 
"http://localhost/todo/hashgen.php" "Mozilla/5.0 (X11; Ubuntu; 
Linux x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"

{'srn': '23228', 'ts': '1639762166.872', 'type': 'PROCTITLE', 
'data': {'proctitle': 
'2F62696E2F7368002F7573722F7362696E2F73657276696365006175646974640
073746F70'}}

Container-based sandboxing shares same pid namespace 



UPG Construction in SLC - Challenges
9

 Challenge 3 – Identification of execution units
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UPG Construction in SLC - Challenges
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UPG Construction in SLC - Challenges
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Challenge 4 – Dependency explosion and handling confounding root causes
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Reverse query results more than one root cause



1. Design of the UPG from application and system logs

Contribution
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2. Runtime execution unit identification:
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3. Utilization of Regular Expression to improve search efficacy

4. Implementation and evaluation



1. Design of the UPG from application and system logs

Contribution
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1. Design of the UPG from application and system logs

Contribution
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Provides a novel approach for constructing a UPG from application logs 
and system logs using the LMS-CFG profiles for different application 
micro-services.
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The LMS-CFG provides a profile of the application.

Static analyzer module generates the application-specific Log 
Message String-Control Flow Graph (LMS-CFG) from the 
application binaries.



Generation of LMS-CFG 
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PoC Program for Accuracy Analysis



Generation of LMS-CFG 
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PoC Program for Accuracy Analysis

CFG for Test Program



Generation of LMS-CFG
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LMS-CFG for Test ProgramCFG for Test Program



Contribution
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2. Runtime execution unit identification:

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

We develop a Linux LKM which can intercept the system calls 
generated during execution time to identify the semantic 
relationship between the system logs and the application logs. 



Contribution
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2. Runtime execution unit identification:

● We develop a Linux LKM which can intercept the system calls generated during 
execution time to identify the semantic relationship between the system logs 
and the application logs. 
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pid = 3545, date = [1639807813132979139] type=SYSCALL msg=audit(1639807813.130:23446): arch=c000003e 
syscall=3 success=yes exit=0 a0=b a1=7f1d34aeb0a0 a2=7f1d35644090 a3=7f1d35628110 items=0 ppid=3586 
pid=3590 auid=4294967295 uid=33 gid=33 euid=33 suid=33 fsuid=33 egid=33 sgid=33 fsgid=33 tty=(none) 
ses=4294967295 comm="apache2" exe="/usr/sbin/apache2" subj==unconfined key=(null)ARCH=x86_64 
SYSCALL=close AUID="unset" UID="www-data" GID="www-data" EUID="www-data" SUID="www-data" 
FSUID="www-data" EGID="www-data" SGID="www-data" FSGID="www-data"

pid = 3586, date = [1639807817707045812] 127.0.0.1 - - [18/Dec/2021:11:40:17 +0530] "GET /todo/ 
HTTP/1.1" 302 461 "-" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"
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2. Runtime execution unit identification:

● We develop a Linux LKM which can intercept the system calls generated during 
execution time to identify the semantic relationship between the system logs 
and the application logs. 

● We propose a heuristic which identifies the syscalls to mark the application’s 
event handling loops by tracing back the application binaries. 

● These event handling loops can be refereed during the runtime partitioning of 
execution units across the micro-services.

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation



Contribution
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2. Runtime execution unit identification:
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[
        "[Sat Dec 18 11:39:23.251164 2021] [watchdog:debug] [pid 3586] mod_watchdog.c(452): AH010033: Watchdog: Running with WatchdogInterval 
1000ms",
        "[Sat Dec 18 11:39:23.251219 2021] [watchdog:debug] [pid 3586] mod_watchdog.c(461): AH02974: Watchdog: found parent providers."
    ],
    [
        "[Sat Dec 18 11:39:23.251226 2021] [watchdog:debug] [pid 3586] mod_watchdog.c(507): AH02977: Watchdog: found child providers."
    ],
    [
        {
            "srn": "23632",
            "exe": "/usr/sbin/apache2",
            "ts": 1639807818599000064,
            "path_name": null,
            "syscall_id": "56",
            "pid": "3586",
            "sock_path": null,
            "sock_laddr": null,
            "sock_lport": null,
            "exit": "3958",
            "arg0": "18874385",
            "syscall_name": "clone"
        },
        "[Sat Dec 18 11:41:27.864426 2021] [core:info] [pid 3586] AH00096: removed PID file /var/run/apache2/apache2.pid (pid=3586)"
    ],
    [
        "[Sat Dec 18 11:41:27.864472 2021] [mpm_prefork:notice] [pid 3586] AH00169: caught SIGTERM, shutting down"
    ],
]
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3. Utilization of Regular Expression to improve search efficacy
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3. Utilization of Regular Expression to improve search efficacy

● Instead of storing the raw log messages in the UPG, we propose conversion and 
storage of an equivalent regular expression. 

● This method improves the matching accuracy of log messages during the 
investigation phase and reduces the runtime search complexity by providing a 
faster response time.

● This method also reduces dependency explosion by decreasing the number of 
nodes in the generated UPG

fprintf(stderr, "AH00526: Syntax error on line %d of %s:");

"AH00526: Syntax error on line -?[0-9]+ of .*:",

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation
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4. Implementation and evaluation
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4. Implementation and evaluation

● DisProTrack can be deployed as a microservice on top of the SLC without 
instrumenting the source code of the applications

● Implementation is open-sourced

● DisProTrack has a minimal memory footprint (~ KB) & responds within 
20s-30s.

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation



DisProTrack
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Adversarial Model
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Microservice 1

Microservice 2

Microservice 3



Adversarial Model
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Microservice 1

Microservice 2

Microservice 3



Adversarial Model
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Microservice 1

Microservice 2

Microservice 3 UPG for Confidential Data Theft



Performance Evaluation - Static Analysis
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Performance Evaluation - Static Analysis
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Depends on 
nature of the 
program control 
instructions 
used by 
developers

Increase in the 
number of 
backtraces can 
identify more 
number of 
LMSes 



Performance Evaluation - Runtime Analysis
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Memory utilization  is 
significantly lower for 
the modules of the 
runtime engine



Performance Evaluation - Runtime Analysis
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Parse time of the log files, 
merging them to create an ASCL 
and generation of UPG during 
provenance builder is directly 
related to the total amount of logs 
generated



● DisProTrack is non-invasive causality analysis framework, for provenance tracking 
over distributed serverless applications. 

● It is capable of adversarial attack analysis by identifying the root causes effectively.
● It can be deployed on top of the SLC as a microservice 
● We have demonstrated a PoC analysis of DisProTrack which shows its efficiency 

and efficacy in detecting attack instances for an SLC application.

Conclusion
34’23
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Please keep this slide for attribution
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For more details refer to our codebase
git: https://github.com/usatpath01/DisProTrack
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To know more about me and my Research Group
Please Visit:

My Homepage: https://usatpath01.github.io/
UbiNet: https://cse.iitkgp.ac.in/resgrp/ubinet/index.html

My Homepage UbiNet

Email: utkalika.satapathy01@gmail.com                                         
utkalika.satapathy01@kgpian.iitkgp.ac.in

DisProTrack

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://github.com/usatpath01/DisProTrack
https://usatpath01.github.io/
https://cse.iitkgp.ac.in/resgrp/ubinet/index.html
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For more details refer to our paper
Source: https://github.com/usatpath01/DisProTrack
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https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://github.com/usatpath01/DisProTrack


A System 
Provenance 
Example
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● Operational expenditure is reduced when 
service computations are stateless, 
elastic, and distributed

● Provides abstractions of the underlying 
infrastructure

● Developer’s effort for maintenance and 
configuration of the environment is 
reduced

● Good platform when everything is 
working fine.

● What happens if something is not right?

○ Too distributed

○ Observability and debugging is 
challenging

Serverless Computing (SLC)
38’23
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Example of UPG
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● Existing serverless-specific industry solutions provide limited support for error 
reporting, execution tracing, and provenance tracking.

Motivation
40’23
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