
DisProTrack: Distributed Provenance
Tracking over Serverless Applications

Utkalika Satapathy1, Rishabh Thakur1, Subhrendu Chattopadhyay2, Sandip Chakraborty1

IIT Kharagpur, India

1

IEEE International Conference on Computer Communications 2023

Network Innovation Lab,
IDRBT, India

2

https://cse.iitkgp.ac.in/resgrp/ubinet/index.html

Provenance Tracking
2’23

Introduction Motivation Challenges Contributions Framework Evaluation

● In traditional Monolithic applications Provenance Tracking can help

● Provenance Data is the metadata of a process (origin, history of modifications)

● To debug system vulnerabilities

● To find the root causes behind faults, errors, or crashes over a running system

● Universal Provenance Graphs (UPG) ensures observability

Universal Provenance Graph (UPG)
3’23

Introduction Motivation Challenges Contributions Framework Evaluation

S1

S2

P1 P2

F1

F2 F3
F4

syscal
l2

syscal
l1

sy
sc
al
l 3

syscall
4

● A graph generated from provenance data is a
Provenance Graph of a process.

● It’s a causal graph that stores the dependencies
between system subjects (e.g., processes) and
system objects (e.g., files, network sockets).

192.168.0.1
Firefox

172.0.0.1

Localhost:3000

Webserver

Php-fpm

Database
File 1 File 2

sendto
revcfrom

sendto
revcfrom

sendtorevcfrom
listen
bindconnect

accept

connectaccept
wr
it
e

r
e
a
d

● Provides abstractions of the underlying
infrastructure

● Operational expenditure is reduced when
service computations are stateless, elastic, and
distributed

● Good platform when everything is working fine.

● What happens if something is not right?
○ Too distributed

○ Observability and debugging is challenging

Serverless Computing (SLC)
4’23

Introduction Motivation Challenges Contributions Framework Evaluation

fx

fx

fx

Serverless Architecture

1

2

3

Challenge 1 – Combining application logs from different micro-services

UPG Construction in SLC - Challenges
5’23

Introduction Motivation Challenges Contributions Framework Evaluation

127.0.0.1 - - [17/Dec/2021:22:58:37 +0530] "GET /todo/hashgen.php HTTP/1.1" 200 539 "-"
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"
127.0.0.1 - - [17/Dec/2021:22:58:45 +0530] "GET /todo/hashgen.php?get_hash=RISHABH
HTTP/1.1" 200 594 "http://localhost/todo/hashgen.php" "Mozilla/5.0 (X11; Ubuntu; Linux
x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"

172.18.0.1 - - [13/Jul/2022:07:49:00 +0000] "GET /login/login.php
HTTP/1.1" 200 1226
pid = 12490, date = [1657698553278104923] 172.18.0.1 - -
[13/Jul/2022:07:49:13 +0000] "POST /login/login.php HTTP/1.1" 302
-

µS1

App Log 1 App Log 2

µS2 µS3

Challenge 1 – Combining application logs from different micro-services

UPG Construction in SLC - Challenges
6’23

Introduction Motivation Challenges Contributions Framework Evaluation

127.0.0.1 - - [17/Dec/2021:22:58:37 +0530] "GET /todo/hashgen.php HTTP/1.1" 200 539 "-"
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"
127.0.0.1 - - [17/Dec/2021:22:58:45 +0530] "GET /todo/hashgen.php?get_hash=RISHABH
HTTP/1.1" 200 594 "http://localhost/todo/hashgen.php" "Mozilla/5.0 (X11; Ubuntu; Linux
x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"

172.18.0.1 - - [13/Jul/2022:07:49:00 +0000] "GET /login/login.php
HTTP/1.1" 200 1226
pid = 12490, date = [1657698553278104923] 172.18.0.1 - -
[13/Jul/2022:07:49:13 +0000] "POST /login/login.php HTTP/1.1" 302
-

µS1

App Log 1 App Log 2

µS2 µS3

Log messages formatting, timestamp formatting, process descriptors vary

UPG Construction in SLC - Challenges
7

Challenge 2 – Combining the system log with the application logs

’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

PHY HW

auditd logs

Apps logs

127.0.0.1 - - [17/Dec/2021:22:58:37 +0530] "GET /todo/hashgen.php
HTTP/1.1" 200 539 "-" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64;
rv:95.0) Gecko/20100101 Firefox/95.0"
127.0.0.1 - - [17/Dec/2021:22:58:45 +0530] "GET
/todo/hashgen.php?get_hash=RISHABH HTTP/1.1" 200 594
"http://localhost/todo/hashgen.php" "Mozilla/5.0 (X11; Ubuntu;
Linux x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"

{'srn': '23228', 'ts': '1639762166.872', 'type': 'PROCTITLE',
'data': {'proctitle':
'2F62696E2F7368002F7573722F7362696E2F73657276696365006175646974640
073746F70'}}

UPG Construction in SLC - Challenges
8

Challenge 2 – Combining the system log with the application logs

’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

PHY HW

auditd logs

Apps logs

127.0.0.1 - - [17/Dec/2021:22:58:37 +0530] "GET /todo/hashgen.php
HTTP/1.1" 200 539 "-" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64;
rv:95.0) Gecko/20100101 Firefox/95.0"
127.0.0.1 - - [17/Dec/2021:22:58:45 +0530] "GET
/todo/hashgen.php?get_hash=RISHABH HTTP/1.1" 200 594
"http://localhost/todo/hashgen.php" "Mozilla/5.0 (X11; Ubuntu;
Linux x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"

{'srn': '23228', 'ts': '1639762166.872', 'type': 'PROCTITLE',
'data': {'proctitle':
'2F62696E2F7368002F7573722F7362696E2F73657276696365006175646974640
073746F70'}}

Container-based sandboxing shares same pid namespace

UPG Construction in SLC - Challenges
9

 Challenge 3 – Identification of execution units

’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

. . .e1 e2 en

Event

Event
Handler

Event
Handler

Event
Origin

Event Handling
Loop

Loop
entry

Loop
exit

UPG Construction in SLC - Challenges
10’23

Challenge 4 – Dependency explosion and handling confounding root causes

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

UPG Construction in SLC - Challenges
11’23

Challenge 4 – Dependency explosion and handling confounding root causes

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Reverse query results more than one root cause

1. Design of the UPG from application and system logs

Contribution
12’23

2. Runtime execution unit identification:

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

3. Utilization of Regular Expression to improve search efficacy

4. Implementation and evaluation

1. Design of the UPG from application and system logs

Contribution
13’23

Introduction Motivation Challenges Contributions Framework Evaluation

1. Design of the UPG from application and system logs

Contribution
14’23

Provides a novel approach for constructing a UPG from application logs
and system logs using the LMS-CFG profiles for different application
micro-services.

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

The LMS-CFG provides a profile of the application.

Static analyzer module generates the application-specific Log
Message String-Control Flow Graph (LMS-CFG) from the
application binaries.

Generation of LMS-CFG

15’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

PoC Program for Accuracy Analysis

Generation of LMS-CFG

16’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

PoC Program for Accuracy Analysis

CFG for Test Program

Generation of LMS-CFG

17’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

LMS-CFG for Test ProgramCFG for Test Program

Contribution
18’23

2. Runtime execution unit identification:

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

We develop a Linux LKM which can intercept the system calls
generated during execution time to identify the semantic
relationship between the system logs and the application logs.

Contribution
19’23

2. Runtime execution unit identification:

● We develop a Linux LKM which can intercept the system calls generated during
execution time to identify the semantic relationship between the system logs
and the application logs.

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

pid = 3545, date = [1639807813132979139] type=SYSCALL msg=audit(1639807813.130:23446): arch=c000003e
syscall=3 success=yes exit=0 a0=b a1=7f1d34aeb0a0 a2=7f1d35644090 a3=7f1d35628110 items=0 ppid=3586
pid=3590 auid=4294967295 uid=33 gid=33 euid=33 suid=33 fsuid=33 egid=33 sgid=33 fsgid=33 tty=(none)
ses=4294967295 comm="apache2" exe="/usr/sbin/apache2" subj==unconfined key=(null)ARCH=x86_64
SYSCALL=close AUID="unset" UID="www-data" GID="www-data" EUID="www-data" SUID="www-data"
FSUID="www-data" EGID="www-data" SGID="www-data" FSGID="www-data"

pid = 3586, date = [1639807817707045812] 127.0.0.1 - - [18/Dec/2021:11:40:17 +0530] "GET /todo/
HTTP/1.1" 302 461 "-" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:95.0) Gecko/20100101 Firefox/95.0"

Contribution
20’23

2. Runtime execution unit identification:

● We develop a Linux LKM which can intercept the system calls generated during
execution time to identify the semantic relationship between the system logs
and the application logs.

● We propose a heuristic which identifies the syscalls to mark the application’s
event handling loops by tracing back the application binaries.

● These event handling loops can be refereed during the runtime partitioning of
execution units across the micro-services.

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Contribution
21’23

2. Runtime execution unit identification:

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

[
 "[Sat Dec 18 11:39:23.251164 2021] [watchdog:debug] [pid 3586] mod_watchdog.c(452): AH010033: Watchdog: Running with WatchdogInterval
1000ms",
 "[Sat Dec 18 11:39:23.251219 2021] [watchdog:debug] [pid 3586] mod_watchdog.c(461): AH02974: Watchdog: found parent providers."
],
 [
 "[Sat Dec 18 11:39:23.251226 2021] [watchdog:debug] [pid 3586] mod_watchdog.c(507): AH02977: Watchdog: found child providers."
],
 [
 {
 "srn": "23632",
 "exe": "/usr/sbin/apache2",
 "ts": 1639807818599000064,
 "path_name": null,
 "syscall_id": "56",
 "pid": "3586",
 "sock_path": null,
 "sock_laddr": null,
 "sock_lport": null,
 "exit": "3958",
 "arg0": "18874385",
 "syscall_name": "clone"
 },
 "[Sat Dec 18 11:41:27.864426 2021] [core:info] [pid 3586] AH00096: removed PID file /var/run/apache2/apache2.pid (pid=3586)"
],
 [
 "[Sat Dec 18 11:41:27.864472 2021] [mpm_prefork:notice] [pid 3586] AH00169: caught SIGTERM, shutting down"
],
]

Contribution
22’23

3. Utilization of Regular Expression to improve search efficacy

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Contribution
23’23

3. Utilization of Regular Expression to improve search efficacy

● Instead of storing the raw log messages in the UPG, we propose conversion and
storage of an equivalent regular expression.

● This method improves the matching accuracy of log messages during the
investigation phase and reduces the runtime search complexity by providing a
faster response time.

● This method also reduces dependency explosion by decreasing the number of
nodes in the generated UPG

fprintf(stderr, "AH00526: Syntax error on line %d of %s:");

"AH00526: Syntax error on line -?[0-9]+ of .*:",

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Contribution
24’23

4. Implementation and evaluation

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Contribution
25’23

4. Implementation and evaluation

● DisProTrack can be deployed as a microservice on top of the SLC without
instrumenting the source code of the applications

● Implementation is open-sourced

● DisProTrack has a minimal memory footprint (~ KB) & responds within
20s-30s.

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

DisProTrack

26’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Adversarial Model

27’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Microservice 1

Microservice 2

Microservice 3

Adversarial Model

28’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Microservice 1

Microservice 2

Microservice 3

Adversarial Model

29’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Microservice 1

Microservice 2

Microservice 3 UPG for Confidential Data Theft

Performance Evaluation - Static Analysis

30’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Performance Evaluation - Static Analysis

31’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Depends on
nature of the
program control
instructions
used by
developers

Increase in the
number of
backtraces can
identify more
number of
LMSes

Performance Evaluation - Runtime Analysis

32’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Memory utilization is
significantly lower for
the modules of the
runtime engine

Performance Evaluation - Runtime Analysis

33’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework Evaluation

Parse time of the log files,
merging them to create an ASCL
and generation of UPG during
provenance builder is directly
related to the total amount of logs
generated

● DisProTrack is non-invasive causality analysis framework, for provenance tracking
over distributed serverless applications.

● It is capable of adversarial attack analysis by identifying the root causes effectively.
● It can be deployed on top of the SLC as a microservice
● We have demonstrated a PoC analysis of DisProTrack which shows its efficiency

and efficacy in detecting attack instances for an SLC application.

Conclusion
34’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

Thanks
Do you have any questions?

Please keep this slide for attribution

35

For more details refer to our codebase
git: https://github.com/usatpath01/DisProTrack

’23

To know more about me and my Research Group
Please Visit:

My Homepage: https://usatpath01.github.io/
UbiNet: https://cse.iitkgp.ac.in/resgrp/ubinet/index.html

My Homepage UbiNet

Email: utkalika.satapathy01@gmail.com
utkalika.satapathy01@kgpian.iitkgp.ac.in

DisProTrack

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://github.com/usatpath01/DisProTrack
https://usatpath01.github.io/
https://cse.iitkgp.ac.in/resgrp/ubinet/index.html

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

Thanks
Do you have any questions?

Please keep this slide for attribution

36

For more details refer to our paper
Source: https://github.com/usatpath01/DisProTrack

’23

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://github.com/usatpath01/DisProTrack

A System
Provenance
Example

37’23

Introduction Motivation Challenges Contributions Framework EvaluationIntroduction Motivation Challenges Contributions Framework EvaluationEvaluationFramework

● Operational expenditure is reduced when
service computations are stateless,
elastic, and distributed

● Provides abstractions of the underlying
infrastructure

● Developer’s effort for maintenance and
configuration of the environment is
reduced

● Good platform when everything is
working fine.

● What happens if something is not right?

○ Too distributed

○ Observability and debugging is
challenging

Serverless Computing (SLC)
38’23

Introduction Motivation Challenges Contributions Framework Evaluation

Example of UPG
39’23

Introduction Motivation Challenges Contributions Framework Evaluation

192.168.0.1
Firefox

172.0.0.1

Localhost:3000

Webserver

Php-fpm

Database
File 1 File 2

sendto
revcfrom

sendto
revcfrom

sendtorevcfrom
listen
bindconnect

accept

connectaccept
wr
it
e

r
e
a
d

● Existing serverless-specific industry solutions provide limited support for error
reporting, execution tracing, and provenance tracking.

Motivation
40’23

Introduction Motivation Challenges Contributions Framework Evaluation

